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ABSTRACT. Tests for the goodness of fit problem, based on sample
spacings i.e., observed distances between successive order statis-

tics, have been used in the literature. This paper reviews some
recent work on tests which make use of ordered spacings, like the
largest spacing, sum of the k largest spacings and a test based
on counting the number of "small” spacings where "small” is defined
so as to optimize the large sample efficiency of the test.

1. INTRODUCTION

Many interesting statistical problems can be reduced to the fol-
lowing simple form: given some independent and identically distri-
buted (i.i.d.) observations on [0,1], test if they are uniformly
distributed on the unit interval. Such problems include

{i) testing goodness of fit: given Xl""’xn—l i.i.d. from same
cumulative distribution function (cdf) F, test if this F is a
given (continuous) cdf FD' By making the so called probability

integral transformation Ui=FD(Xi], i=1,...,(n-1) on the data,

this reduces to the interval D],l] and to testing uniformity.

(1i) testing for a Poisson process and/or exponentiality of inter-
arrivals: given the times of occurrences of events in a finite in-
terval, one would want to verify if these were generated by a Poils-
son process. From the property that a homogeneous Poisson process,

suitably scaled, behaves like the uniform distribution, this prob-
lem is equivalent to testing uniformity on the unit interval.

589

J. Tiago de Oliveira (ed.), Statistical Extremes and Applications, 589—596.
© 1984 by D. Reidel Publishing Company.




.
f =
W
-
.
]
.
a
L]
.
1
i
4

590 S. RAO JAMMALAMAD Ak

(iii) testing for no preferred direction in circular data: A
novel area of statistics is where the measurements are directigpg
Such directions in 2-dimensions can be represented as points op ,
the perimeter of a unit circle and are raferred to as the circyla,
data. See for instance J.,S. Rao [B]. One of the important ques-
tions here is whether the data is uniformly distributed (isotrg-
pic) or if indeed, there is a preferred direction. By cutting Oper
the circle at anyone of the observations, this problem reduces tq 1
testing uniformity on [U.l].

Among the several possible approaches to testing uniformity

which include empirical distribution function methods and X2 me-
thods, we would like to focus on those which utilize the spacings
Let Ul""‘Un—l be (n-1) i.i.d. random variables (r.v.7s) frop

a continuous cdf F(u) on [U,l]. The null hypothesis of inte-
rest is

Hy:F(u) = u, 0<u<l. {(1.1)

Define the order statistics

Y. = U, - U, , 1=1,...,n. (1.2)

For notational convenience, we drop the second subscript n on
the spacings and refer to them as [Yi, i=1,...,n} which add uphﬂ

L

1. Tt is easy to see that the joint distribution of (Yl""’Yn-ﬁ

45 a Dirichlet distribution with constant density (n-1)1 over

n-1
>0, L yif_l}. Recall that a collection of T.W. 8
1

{yryy

(Yl....,Yb] is said to have a Dirichlet distribution with para~

) . , ¢ thel
meters (Vi,.ee,Vys vb+1)’ written as D(Vi,..esVys vb+1] if the

have the joint density

TV, +...+t V ) b v,-1 Y -1
P[vl] r(3+1 (T, B WEEERRETS b+l (1.3)
Bl b+1° i=1
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gver the b-dimensional simplex S = {[yl,...,yb]:yi >0,
b
i = 1,.0.,0, ¥ yif_l} and zero outside Sb' For an elementary
1

gxposition on Oirichlet distributions and some properties, see
Wilks [ﬂ]. pp. 177-182 and for a more detailed discussion &8 well
as tables, see Sobel et al LH}. One important property that we
ghall use later an, ig that the marginal distributions of Dirichlet
are also Dirichlet f.e., if a < b, Lthen {Yl,...,Yﬁ]f“\DtU1,...,Ua;
Va+1+...+ vb+1) where " m " denotes "distributed as”.

Coming back to uniform spacings, these are exchangeable with

E[Yi] = % for all i wunder HD' Thus tests of the form

n
) (Yi— %JZ and lYi— %ﬁ have been proposed and used to test
i=1 i

HO' See for instance Rao and Sethuraman [4], [5] for a unified

n o3
[

treatment of the asymptotic theory and efficiencies. Simpler and
more intuitive tests based on ordered spacings have also been used
for this problem. Let

Y (1.4}

Yy £ 2 V)

be the ordered uniform spacings. Fisher [1] used the largest spa-

cing Y to construct a test of significance of the largest amp-
(n)

1itude in harmonic analysis. J.S. Rao [3] defined the complement
of the largest gap on the circle as the ncircular range” since this
is the smallest interval containing all the observations and pro-
posed a test of uniformity on the circle based on it.

2. SOME RESULTS ON EXACT DISTRIBUTIONS

For b f_[n—l], coneider the b spacings (Yl,...,Yb] which have

s D{l,...,1:; (n-b)) distribution. J.S. Rao and Sobel [7] define
the following two b-dimensional incomplete Dirichlet integrals:

_yir P p = g B
10 (1,m = T%gﬁ%%?f T oes assy" o7l gy, (2.1)
P HERS e g 0 1 1
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b
{E y;< 1}
for 0 <p< 1 and
J;bjtl,n] = TE%E{%%%- }... } (1- ; yi]n_b_l T dy, (2.2)
p P 1 1
b
{§ y; £ 1}
for 0 < p < %—. These integrals represent respectively, P[Yi <py
i=1,...,b) ie., the maximum of these b spacings is less than

p and P(Yi > p, i=1,...,b) ie., the minimum of these b spa-
cings exceeds p. Using recurrence relations on these, one can

then obtain the distributions of ordered spacings and statistics
based on these. For instance, it can be seen

n-1 _(b-1)

(b) _ -(b-1) ~ _
Ip (1,n) = Ip (1,n) (1-p) Ip/[l—p) (1,n) (2.3)
and by successive iterations, this reduces to
(b) 8 j b n-1
1% am = zo-udcher - gy, (2.4)

where ¢<x»=x if x >0 and =0 if x < 0. It can be shown
(refer Rao and Sobel [7]) that the joint distribution of the
k largest spacings viz. Y[n—K+l]""' Y[n] is given by an I-type

integral
£ (as..era) N T Ut I A UL Y S PR
1 K p*p K D
Yok Y em) K k k
i n (2.5)
- J.n-k z n-k
= (n-l)P e -1 0,) <AK‘JBK>
k k  j=0 J

k
for 0 <a, <... <a, <1, L aif_l, and with the notation
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Y 5 P(Yi <,
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>

= b spa-

one can
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(2.3)

(2.4)

be shown
1 of the
oy an I-type

,n-k-1)
(2.5)
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k
= N = . i .5
Ay (1 ? ai] and P, aK/AK Starting from (2.5) one can
. " . . th .
obtain the distribution of the Kk largest spacing Y[n—K+1)
n
or the sum of the k largest gaps )X Y[i] . The density
i=n-k+1

functions of these two statistics are

n i i .n-k n-2
F (x) = (n-1).k.() T -9 (MY ¢1-Grx> (2.6)
(n-k+1) 3=0 J

for 0 < x < %- and

(-1t

q G-k (- ek -0

£,(s) = n(n-1) Gs-ky" 2

n ™3

J
(2.7}

for k/q < s < k/(g-1), g=k+l,....n. Analogous results for the

smallest spacings may be obtained by using the J-function in
(2.2) or more easily by using the complementary nature of these,

namaly that the kth largest is the [n—h+1]th smallest and that
the sum of the k smallest spacings is equal to the complement of
the sum of the (n-k) ldrgest spacings. These and other details
including fuller derivations may be found in Rao and Sobel [7]
which streamlines and unifies the distribution theory, also deri-
ved by other methods in- the literature before.

3, A TEST BASED ON THE NUMBER OF "SMALL" SPACINGS

To detect certain clustering alternatives one may simply count the
number of "small” spacings and reject the hypothesis of uniformi-

ty if there are too many "small” spacings. This type of a statis-
tic was investigated in Puri, Rao and Yoon [2]. Recall that an ave-

Therefore one may

rage spacing is of the order of %— under HD'

define for 0 < 6<1, a spacing as "small” if it is smaller than
5n= §/n. Let

R = Rn[GJ = pnumber of Yi < 6/n . (3.1)

n
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The following results are quoted from Puri, Rao and Yoon (14

i
Theorem 1 (Exact null distribution). Under the hypothesig of q),
formity, the probability mass function of Rn defined in (3‘1)Upi\

1s

given by

n g j.k n-1
P(Rn =k) = () E (-1) [j] <1—[n—k+3]6n>

(3_2)
for k=0,1,...,n-1

Theorem 2 (Asymptotic distribution under close alternatives),

When Ul""’Un—l are i1.i.d. from the sequence of close alterps.

tives densities

a (x) =1+ » 0 <x <1 (3.3)

R
then vnl —% - Gn[GJJ is asymptotically N[D,Oz) where

-X e_>< x2 2 2
Gn(x] = (1-e 7) +7lﬁ—" (x- = 1( é 27 (pldp), x >0

The asymptotic null distribution of Rn is obtained from

Theorem 2 by putting £(x) 20,0 < x <1, which affects only the
|

mean. This type of a result allows one to compute the asymptotic
relative efficiency (Pitman efficiency), which is the reciprocal
of the sample size required for the test to attain a specified

wl power. Because of the nature of the alternatives (3.3), the Pit-
y man efficiency for Rn(GJ is given by the expression

1 2
o 22 (pdp? (s- 2—14

4
( A ) s Bl (3.4)
5 (e° -1-6%)°

where UA denotes the change in the mean under the alternatives

from that under the null hypothesis. By numerical evaluations,
it can be seen that among the several possible definitions of
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wemall” ie. choices of 6, the value &= 0.7378 yields the lar-
ggﬁt asymptotic efficiency. Thus, an optimal definition of a
wsmall™ spacing is when the spacing is about 73.78% smaller than
the average value 1/n. One may use this as the definition of
ngmall” spacing and test the hypothesis (1.1) using Theorem 1 for
the null distribution.

an illustrative example. Suppose a fire station received 20 calls
on a particular day and we wish to test 1if these are uniformly dis-
tributed over the entire day or they tend to cluster around some
particular time of the day. Suppose the calls are received at the
following times:

1.10, 4.30, 6.00, 6.10, 7.00, 8.00, B.30, 8.45, 9.30, 10.05,
13.00, 14.10, 16.00, 17.50, 19.30, 21.15, 22.00, 22.15, 23.00,
23.30.

The optimal definition of "small” spacing is when it is smaller

than Sn =(0.7379) %% hrs. - 53 mts. The observed Rn’ the num-

per of small spacings, for this data is, 10. From Theorem 1, it
can be checked that this value of Rn=10 is not significant even

o = 0.10. Therefore, it may be caoncluded that there is no reason
to reject the hypothesis of randomness of these calls in time.
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function FU. It is intuitively clear that no informatigp is q

¥a 3 ; . . {08t

1 Z1ff"fzm is replaced by y1§...fym"1f_zm where, givep Zm=

ap LS is distri e Asred Yo o med s

y1, 3Vyq 1B igtribubted as the ordered sample of pi-1 Lnd“PEHQErL
Denden;.

PPTopr]

*€P th:i.s'.

procedure is also applied when the original sample has g og

distribution function F which is close — in a sense to be descriy,
(=] led

later = to Fo; thus, the wvalues y1§,..fyﬁ_1 are still generateq

random variables which are distributed according to the g
ately defined restriction of F0 to (O,zm). In the next g

THNON

according to the restriction of the distribution function p

being known to the statistician (see also Weiss [8], page 796)
Tt can be proved that for every critical function Y the powep
function of w(y1,...,ym_1,zm) is an approximation to the power

function of w(z1,...,zm) if F is close to F_. These ideas can pe

expressed in a mathematical model by using the conditional digtypi
bution K(zm,-) of 215,..§;m given Zm_where Fo is the actual distri-

bution function. The final outcomes y.<...<y <z of the random

experiment are governed by the distribution which is induced by
z, and the Markov kernel K. By making use of the Fubini theorep

for the distributions of Markov kernels it can easily be shown that
the test procedure based on w(y1,...,ym?1,zm) is equivalent - ag

far as power functions are concerned — to the test procedure based
on &(zm) where J= [{(x)K(-,dx). Thus, it is not necessary that the

statistician consults his random number generator to obtain the
values y1,...,ym_1 as described above.

One has to be cautious when applying this method to other
cases. As a second example we mention the case where Z, is
omitted from.z1§3.{izm. It can be shown by examples that there
are cases where, roughly speaking, all the information which is of
interest for us concerning the unknown distribution function F is
carried by z 5 thus, omitting 2 from z,,...,2 can possibly

result in the loss of all power within a particular testing problem.

Moreover, we indicate the possibility of making the statisti-
cal inference within an approximate, simplified model. For this
reason we study again the case that the ordered values Z1fg.-f?m_1

are removed from z f,.{izm. If the underlying distribution function

1
belongs to some domain of attraction of an extreme value distri-
bution then it is well known that for m being fixed the stand-
ardized distributions of z and (Z1""’Zm) converge in




